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A new method to adjust for covariate effects in the estimation of volume under a ROC 
surface (VUS) is presented. The method is based on the induced-regression methodol-
ogy, which uses location-scale regression models to explain the relation between the test 
results and the covariate(s). For the estimation of the models, it is proposed to use a semi-
parametric generalized estimating equations (GEE) approach if the parametric forms of the 
mean and variance functions are specified. Alternatively, a nonparametric method is pro-
posed, based on local linear regression (LL). In order to estimate the covariate-specific VUS, 
a covariate-specific Mann-Whitney representation of VUS is used, and working samples 
constructed after fitting the location-scale models by the GEE or LL approach. This leads 
to new MW-GEE and MW-LL covariate-specific VUS estimators. The asymptotic behavior
of the new estimators is investigated. More precisely, their mean squared consistency is 
proved. Moreover, the performance of the estimators in finite samples is explored through 
several simulation experiments, and an illustration, based on data from the Alzheimer’s 
Disease Neuroimaging Initiative, is provided.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Receiver operating characteristics (ROC) analysis is widely used to evaluate the ability of a diagnostic test (or biomarker) 
to distinguish among different states of a disease. In particular, if the disease status has two categories (e.g., diseased and 
non-diseased), the ROC curve and the area under the ROC curve (AUC) are classical tools that serve as measurements of test 
accuracy. In case of a three-class disease status (e.g., non-diseased, intermediate, diseased), the ROC surface and the volume 
under the ROC surface (VUS) represent natural generalizations, and several statistical methods have been developed for the 
estimation of these accuracy indexes; see, Zhou et al. (2011) and Pepe (2003) for comprehensive reviews.

Often, in biomedical studies, the researchers collect not only results of potential diagnostic tests but also additional 
information, about the subjects under study, as covariates (e.g., age, sex, comorbidity profiles). Such covariates may affect 
the accuracy measures for the tests.

As reviewed in Pardo Fernández et al. (2014), three methodologies are available capable to address possible covariates ef-
fects on the ROC curve and the AUC, which are based on conditional distributions, induced-regression and direct-regression, 
respectively. In the first case, the estimation of a covariate-specific ROC curve and a covariate-specific AUC are based on 
the two conditional distribution functions of the test result given the covariates values for diseased and non-diseased sub-
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jects (López-de Ullibarri et al., 2008; de Carvalho et al., 2013). As for the induced-regression methodology, two separate 
location-scale regression models are used to explain the covariates effect on the test results in the non-diseased class and 
the diseased class. Then, the covariate-specific ROC curve and the area underneath are derived by using the induced form 
(Pepe, 2003; Faraggi, 2003; Yao et al., 2010; González-Manteiga et al., 2011). Thus, in the induced-regression methodology, 
the covariates effect on the ROC curve and the AUC are evaluated indirectly. In contrast, the idea in the direct-regression 
methodology is to use a regression model for describing directly the effect of covariates on the ROC curve and the AUC 
(Alonzo and Pepe, 2002; Dodd and Pepe, 2003; Pepe, 2003; Rodríguez-Álvarez et al., 2011).

Studies of methods capable to account for possible effects of covariates on the ROC surface and the VUS are rarely 
presented in the statistical literature. To the best of our knowledge, only Li et al. (2012) discuss a method for estimating 
covariate-specific ROC surfaces and VUS, which is an extension of the induced-regression methodology for the two-class 
setting. In particular, the authors assume that the covariates effect on the test results in each class of disease can be 
explained by a transformation-location-scale model, with a linear form for the mean function and with constant variance. 
As for the parameter estimation, Li et al. (2012) propose three different approaches addressing the following three specific 
settings: (i) the transformation function and the density functions of error terms are known; (ii) the transformation function 
is unknown and the density functions of error terms are known; (iii) the transformation function has a parametric form 
and the density functions are unknown. The covariate-specific ROC surface is estimated by using the specific forms or the 
empirical estimates of the cumulative distribution functions of the error terms. Then, the covariate-specific VUS is estimated 
by integrating the estimate of the covariate-specific ROC surface.

In this paper, we propose an alternative, more general, approach to estimate the covariate-specific VUS, that relies on 
the induced-regression methodology and the working sample technique (Yao et al., 2010). More precisely, to describe 
the relation between test result and covariates, in each disease class we consider a location-scale regression model with 
heteroscedastic error. To estimate the mean and variance functions, we employ parametric and nonparametric estimation 
techniques, namely, generalized estimating equations and local linear regressions. Then, to estimate the covariate-specific 
VUS, we consider a nonparametric covariate-specific Mann-Whitney representation of VUS (see Nakas and Yiannoutsos 
(2004) for the simple setting with no covariates) and apply the plug-in principle. This step relies on working samples, con-
structed at the specific set of values for the covariates. We also discuss how to estimate the covariate-adjusted VUS (Li et 
al., 2012).

The asymptotic behavior of our proposed estimators is investigated. More precisely, we prove that the proposed 
covariate-specific VUS estimators are mean squared (MS) consistent. Then, consistency of the covariate-adjusted VUS es-
timator is easily derived by the continuous mapping theorem. In order to estimate the variances of the estimators and to 
construct confidence intervals, we propose to use a bootstrap procedure. The performance of our proposed estimators in 
finite samples is explored through several simulation experiments.

Compared with the model in Li et al. (2012), our solution appears to be more flexible, as it allows any parametric or 
nonparametric forms for the mean and variance functions. Furthermore, our approach does not require any assumption 
about the distributions of the error terms. Note that our covariate-specific VUS estimators do not require estimation of the 
covariate-specific ROC surface; as a consequence, our approach is computationally advantageous when compared with the 
one in Li et al. (2012).

The paper is organized as follows. In Section 2, we discuss about the model settings and the proposed estimators for 
the mean and variance functions and for the covariate-specific VUS. In Section 3, we present our theoretical results about 
asymptotic behavior of our proposed estimators. The simulation results are presented in Section 4, and an illustration, 
based on data from the Alzheimer’s Disease Neuroimaging Initiative, is provided in Section 5. Concluding remarks are left 
to Section 6.

2. Model and estimation

2.1. Notation and model setting

Let Y1, Y2, Y3 be the test results for subjects with respect to three classes of disease status, say 1, 2 and 3, respectively. 
Let X denote a covariate (or a set of covariates) which could affect the accuracy of the diagnostic test. In what follows, 
to ease presentation, we will refer to a single covariate, deferring to Section 6 a discussion about the extension to the 
multidimensional case.

To model the relationship between X and the test results, we specify the following location-scale regression models:

Y1 = μ1(X) + σ1(X)ε1,

Y2 = μ2(X) + σ2(X)ε2, (1)

Y3 = μ3(X) + σ3(X)ε3,

where μ j(·) = E(Y j |X = ·) and σ 2
j (·) = Var(Y j |X = ·) are the conditional mean and conditional variance of the test result 

Y j given the covariate X , respectively; the errors ε j are independent of each other and have zero means and unit variances. 
Let F j(y|x) = Pr(Y j ≤ y|X = x) be the conditional cumulative distribution functions (c.d.f.) of Y j given X , and G j(·) be the 
cumulative distribution functions of error ε j .
2



JID:COMSTA AID:107434 /FLA [m3G; v1.310] P.3 (1-15)

D.-K. To, G. Adimari and M. Chiogna Computational Statistics and Data Analysis ••• (••••) ••••••
Hereafter, we assume that higher values of the test are associated to higher severity of the disease at a given value x
of covariate X , i.e., the intrinsic natural stochastic ordering is Y1 < Y2 < Y3, for each fixed X = x (see Li et al., 2014 for 
a discussion about situations in which the ordering is not a priori known). The covariate-specific volume under the ROC 
surface (VUS) is then defined as

θ(x) = Pr(Y1 < Y2 < Y3|X = x). (2)

Let n1, n2 and n3 denote the sample sizes for the three classes of disease. Consider the following covariate-specific 
quantity:

θMW(x) = 1

n1n2n3

n1∑
i=1

n2∑
r=1

n3∑
k=1

I (Y1i(x) < Y2r(x) < Y3k(x)) , (3)

where I(·) stands for the indicator function,

Y1i(x) = μ1(x) + σ1(x)ε1i, Y2r(x) = μ2(x) + σ2(x)ε2r, Y3k(x) = μ3(x) + σ3(x)ε3k, (4)

and ε1i , ε2r and ε3k are the standardized residuals:

ε1i = Y1i − μ1(X1i)

σ1(X1i)
, ε2r = Y2r − μ2(X2r)

σ2(X2r)
, ε3k = Y3k − μ3(X3k)

σ3(X3k)
. (5)

In (5), for a subject in the j-th class, j = 1, 2, 3, Y ji is a test value and X ji is the associated observed covariate value.
When Y ji(x) = Y ji , that is, in absence of covariates, quantity (3) reduces to the nonparametric Mann-Whitney (MW) 

estimator of the VUS (Nakas and Yiannoutsos, 2004). In presence of covariates, (3) could still be used to estimate the 
covariate-specific VUS provided that both functions μ j(·), σ 2

j (·) and all the standardized residuals were known, a condition 
that allows to construct the working samples {Y1i(x)}i=1,...,n1 , {Y2r(x)}r=1,...,n2 and {Y3k(x)}k=1,...,n3 , that pretend that all 
units are observed at the value X = x. In practice, however, such knowledge is not available, so that μ j(·) and σ j(·) have 
to be estimated, along with the standardized residuals and the working samples. In the next subsections, we discuss two 
approaches for estimating such quantities starting from the location-scale regressions (1). The first approach is a parametric 
approach; the second, a non-parametric one.

With a slight abuse of terminology, we name quantity (3) Mann-Whitney representation of VUS (MW VUS) in the paper. 
Moreover, to account for possible ties, the definition of θMW(x) in (3) can be rewritten as

θMW(x) = 1

n1n2n3

n1∑
i=1

n2∑
r=1

n3∑
k=1

{
I (Y1i(x) < Y2r(x) < Y3k(x)) + 1

2
I (Y1i(x) < Y2r(x) = Y3k(x))

+ 1

2
I (Y1i(x) = Y2r(x) < Y3k(x)) + 1

6
I (Y1i(x) = Y2r(x) = Y3k(x))

}
. (6)

Finally, note that, the distributions of error terms ε j, j = 1, 2, 3, do not depend on the covariate X . Thus, terms ε ji in (4)
are realizations of independent and identically distributed (i.i.d.) random variables, with c.d.f. G j for i = 1, . . . , n j , j=1,2,3. 
As a consequence, Y1i(x), Y2r(x) or Y3k(x) in (3), (4) and (6) are realizations of i.i.d. random variables.

2.2. GEE estimation

Assume that the conditional mean and variance functions can be written in some parametric form, such as μ j (x) =
h j(β j; x) and σ 2

j (x) = g j(α j; x) > 0, where h j and g j are known smooth functions. Then, the estimators of parameters β1, 
β2, β3 and α1, α2, α3 can be obtained through the method of generalized estimating equations (GEE), i.e., by solving the 
following equations (Liu and Zhou, 2011):

0 = U1 j(β j;α j) =
n j∑

i=1

(
∂h j(β j; X ji)

∂β j

)�
Y ji − h j(β j; X ji)

g j(α j; X ji)
,

0 = U2 j(α j;β j) =
n j∑

i=1

(
∂ g j(α j; X ji)

∂α j

)� {Y ji − h j(β j; X ji)
}2 − g j(α j; X ji)

g2
j (α j; X ji)

,

j = 1, 2, 3. The solutions β̂ j and α̂ j can be obtained by the modified Fisher scoring method. The iterative procedure is 
described as follows.

1. Choose starting values β(0) and α(0) .
j j

3
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2. For t = 0, obtain

β
(t+1)
j = β

(t)
j +

⎧⎨⎩
n j∑

i=1

D(t)�
ji D(t)

ji

g j(α
(t)
j ; X ji)

⎫⎬⎭
−1⎡⎣ n j∑

i=1

D(t)�
ji

{
Y ji − h j(β

(t)
j ; X ji)

}
g j(α

(t)
j ; X ji)

⎤⎦ ,

α(t+1)
j = α(t)

j +
⎧⎨⎩

n j∑
i=1

E(t)�
ji E(t)

ji

g2
j (α

(t)
j ; X ji)

⎫⎬⎭
−1
⎡⎢⎣ n j∑

i=1

E(t)�
ji

{
Y ji − h j(β

(t)
j ; X ji)

}2 − g j(α
(t)
j ; X ji)

g2
j (α

(t)
j ; X ji)

⎤⎥⎦ ,

where

D(t)
ji = ∂h j(β j; X ji)

∂β j

∣∣∣∣
β j=β

(t)
j

, E(t)
ji = ∂ g j(α j; X ji)

∂α j

∣∣∣∣
α j=α(t)

j

.

3. Set t = t + 1 and repeat step 2 until 
∥∥∥β(t+1)

j − β
(t)
j

∥∥∥
2
< δ and 

∥∥∥α(t+1)
j − α(t)

j

∥∥∥
2
< δ, where δ is a small arbitrary number, 

say δ = 10−9, and ‖ · ‖2 is a Euclidean norm.
4. Finally, let β̂ j = β

(t+1)
j and α̂ j = α(t+1)

j .

Plugging the GEE estimates β̂ j and α̂ j into the functions h j(.; x) and g j(.; x), gives rise to the GEE estimates μ̂ j,GEE(x) and 
σ̂ 2

j,GEE(x) of the conditional means and conditional variances, respectively. In practice, in order to guarantee positiveness of 
the estimated variances, we suggest to use the exponential transformation exp

(
g j(α j; x)

)
before starting the algorithm.

2.3. Local linear regression estimation

In a non-parametric framework, the conditional means μ j(x) and the conditional variances σ 2
j (x) appearing in the 

location-scale regression models (1) could be estimated by using the classical Nadaraya-Watson kernel estimator; however, 
as such estimator suffers from boundary and design bias, in this paper we propose the use of the so-called local linear 
estimator.

Let K (·) be a symmetric kernel function and

Z jx =

⎛⎜⎜⎜⎝
1 (X j1 − x)
1 (X j2 − x)
...

...

1 (X jn j − x)

⎞⎟⎟⎟⎠ ,

with j = 1, 2, 3, the design matrices. Let

Wx,u j = diag
{

Ku j

(
X j1 − x

)
, . . . , Ku j

(
X jn j − x

)}
,

where Ku j (·) = K (·/u j) and u j ≡ u j(n j) is a bandwidth sequence. The local linear regression estimator of the conditional 
mean μ j(x) is given by (Wasserman, 2006)

μ̂ j,LL(x) = e�
1

(
Z�

jxWx,u j Z jx

)−1
Z�

jxWx,u j Y j, (7)

where e1 = (1, 0)� . Similarly, we could use the local linear regression estimation for the conditional variances σ 2
j (x). How-

ever, this approach does not guarantee that σ̂ 2
j (x) > 0. Thus, we employ the log-transform based method proposed by Chen 

et al. (2009). More precisely, we rewrite the location-scale regression models (1) as

log(r j) = γ j(X) + log
(
ε2

j /d j

)
, (8)

where r j = {Y j − μ j(X)
}2, γ j(·) = log

(
d jσ

2
j (·)
)

, and d j that satisfies E 
{

log
(
ε2

j /d j

)}
= 0. A local linear estimator γ̂ j(x) is 

obtained as ̂a j0, where

(̂
a j0, â j1

)= arg min(
a j0,a j1

)
n j∑

i=1

{
log
(̂

r ji + n−1
j

)
− a j0 − a j1

(
X ji − x

)}2
K v j

(
X ji − x

)
,

and v j ≡ v j(n j) is a bandwidth sequence. Here, log
(̂

r ji + n−1
j

)
is used to avoid log(0). Then, the estimator σ̂ 2

j,LL(x) is 

obtained as exp
{
γ̂ j(x)

}
/̂d j with
4
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d̂ j = n j

[ n j∑
i=1

r̂ ji exp
{−γ̂ j(X ji)

}]−1

.

The estimator ̂d j is derived from the fact that E 
(
ε2

ji |X ji

)
= 1 and r ji = exp

{
γ j(X ji)

}
ε2

ji/d j (Chen et al., 2009).

2.4. VUS estimation

By plugging the parametric or non-parametric estimators μ̂ j,∗(X ji) and σ̂ 2
j,∗(X ji) into (5), one obtains the estimated 

standardized residuals

ε̂1i,∗ = Y1i − μ̂1,∗(X1i)

σ̂1,∗(X1i)
, ε̂2r,∗ = Y2r − μ̂2,∗(X2r)

σ̂2,∗(X2r)
, ε̂3k,∗ = Y3k − μ̂3,∗(X3k)

σ̂3,∗(X3k)
(9)

where the star ∗ stands for the type of estimator, i.e., GEE or LL. Therefore, the estimated working samples at X = x are 
obtained as

Ŷ1i,∗(x) = μ̂1,∗(x) + σ̂1,∗(x)̂ε1i,∗,
Ŷ2r,∗(x) = μ̂2,∗(x) + σ̂2,∗(x)̂ε2r,∗,
Ŷ3k,∗(x) = μ̂3,∗(x) + σ̂3,∗(x)̂ε3k,∗,

and the covariate-specific VUS estimators are

θ̂MW−∗(x) = 1

n1n2n3

n1∑
i=1

n2∑
r=1

n3∑
k=1

I
(
Ŷ1i,∗(x) < Ŷ2r,∗(x) < Ŷ3k,∗(x)

)
, (10)

where, again, the star ∗ stands for GEE or LL. When ties are present in the data, we use

θ̂MW−∗(x) = 1

n1n2n3

n1∑
i=1

n2∑
r=1

n3∑
k=1

{
I
(
Ŷ1i,∗(x) < Ŷ2r,∗(x) < Ŷ3k,∗(x)

)
+ 1

2
I
(
Ŷ1i,∗(x) < Ŷ2r,∗(x) = Ŷ3k,∗(x)

)+ 1

2
I
(
Ŷ1i,∗(x) = Ŷ2r,∗(x) < Ŷ3k,∗(x)

)
+ 1

6
I
(
Ŷ1i,∗(x) = Ŷ2r,∗(x) = Ŷ3k,∗(x)

)}
. (11)

Observe that the proposed MW-GEE estimator is a semi-parametric estimator, because it requires the specification of 
parametric forms to estimate the conditional means μ j(·) and the conditional variances σ 2

j (·), but it relies on a nonpara-
metric approach to estimate the covariate-specific VUS. Meanwhile, the MW-LL estimator is fully non-parametric.

In addition to evaluate covariate-specific VUS at relevant covariate values, it may be useful to estimate a synthetic index 
that provides an average measure of the VUS, across the distribution of X . Such an operation is easy if X is univariate. For 
X continuous, as in Li et al. (2012), we can define a covariate-adjusted VUS as

AVUS =
∫
�

θ(x) f X (x)dx, (12)

where � is the domain of X . In practice, one can focus only on an interval of covariate values, say [a, b], instead of the 
entire domain �. In this case, we can use a truncated covariate-adjusted VUS defined as follows

tAVUS =
b∫

a

θ(x)
f X (x)I[a,b](x)

F X (b) − F X (a)
dx. (13)

The (marginal) density function f X (·) of X can be estimated by using the histogram estimator, i.e.,

f̂ X (x) = 1

nh

n∑
i=1

I

( |Xi − x|
h

≤ 1

2

)
,

where h is a bandwidth, set as h = 2IQRn−1/3 (Freedman and Diaconis, 1981), and IQR denotes the interquartile range of X . 
Moreover, n = n1 + n2 + n3. The cumulative probability function F X (·) can be estimated by using the empirical distribution 
F̂ X (·). Substituting the estimates θ̂MW−∗(x), f̂ X (x), F̂ X (a) and F̂ X (b) into equation (12) or (13), and using the trapezoidal 
rule leads to the estimators ̂AVUSMW−∗ or ̂tAVUSMW−∗ .
5
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3. Asymptotic properties

In this section, we establish the asymptotic properties of the covariate-specific MW-GEE and MW-LL estimators, at X = x. 
First, we show that the covariate-specific MW VUS θMW(x) in (3), which contains the true conditional mean and variance 
functions, is unbiased, consistent and asymptotically normal, when these functions are assumed to be known. Second, we 
prove that the MW-GEE and MW-LL estimators θ̂MW−GEE(x) and θ̂MW−LL(x) in (10) are mean squared (MS) consistent under 
some regularity conditions. The theory easily extends to the covariate-specific VUS estimators (6) and (11), in presence of 
ties.

Recall that n is the total sample size, i.e., n = n1 + n2 + n3. Let

φ(Y1, Y2, Y3; x) = I(Y1 < Y2 < Y3|X = x).

It is straightforward to show that E {φ(Y1, Y2, Y3; x)} = θ(x). Let

φ000 = E {φ(Y1, Y2, Y3; x)} − θ(x) = 0, φ100 = E {φ(Y1, Y2, Y3; x)|Y1} − θ(x)
φ010 = E {φ(Y1, Y2, Y3; x)|Y2} − θ(x), φ001 = E {φ(Y1, Y2, Y3; x)|Y3} − θ(x)
φ110 = E {φ(Y1, Y2, Y3; x)|Y1, Y2} − θ(x), φ101 = E {φ(Y1, Y2, Y3; x)|Y1, Y3} − θ(x)
φ011 = E {φ(Y1, Y2, Y3; x)|Y2, Y3} − θ(x), φ111 = E {φ(Y1, Y2, Y3; x)|Y1, Y2, Y3} − θ(x).

Let λ2
i jk be Var(φi jk) with i, j, k ∈ {0, 1}, so that λ2

000 = 0 and λ2
111 = θ(x) (1 − θ(x)). For given X = x, it is worth noting that 

the MW VUS θMW(x) in (2) is actually a three-sample U-statistic. The theory of U-statistics (Lehmann, 1998) allows us to 
prove the following theorem.

Theorem 1. Assume that the conditional means μ j(·) and the conditional variances σ 2
j (·) in the location-scale regression models (1)

are known. For a fixed x, we have E(θMW(x)) = θ(x) and Var(θMW(x)) = O  
(

1
n1+n2+n3

)
. Furthermore, we have

√
n (θMW(x) − θ(x))

d−→ N
(

0,
λ2

100

n1
+ λ2

010

n2
+ λ2

001

n3

)
(14)

when n → ∞, provided that n j/n → ρ j with 0 < ρ j < 1 ( j = 1, 2, 3), and λ2
100 , λ2

010 and λ2
001 are strictly positive.

Next, we establish the MS consistency of the MW-GEE estimator θ̂MW−GEE(x) and of the MW-LL estimator θ̂MW−LL(x), for 
a given covariate value X = x. We start by stating consistency and asymptotic normality of the estimators β̂ j and α̂ j . Then, 
we show that the estimators of mean and variance functions (both for GEE and LL approaches) are uniformly consistent. All 
the proofs can be found in Section A, Supplementary Material.

Lemma 2. Suppose that parametric forms of h j(β j; ·) and g j(α j; ·) are specified, with j = 1, 2, 3. Then, under the regularity condi-

tions (P1)-(P4) given in Section A.2, Supplementary Material, the estimators ̂β j and ̂α j are consistent and

√
n

((
β̂ j
α̂ j

)
−
(

β j
α j

))
d−→ N (0,� j),

for suitable matrices � j . Furthermore, the GEE estimators of the mean μ̂ j,GEE(x) and the variance ̂σ 2
j,GEE(x) functions are uniformly 

consistent.

Lemma 3. Suppose that the regularity conditions (N1)-(N9) stated in Section A.4, Supplementary Material, hold. Then, the LL estimators 
of the mean ̂μ j,LL(x) and the variance ̂σ 2

j,LL(x) functions are uniformly consistent.

Theorem 4. Under the regularity conditions (P1)-(P5) for the GEE approach or (N1)-(N10) for the LL approach, for given X = x, we 
have

E
{
θ̂MW−∗(x) − θ(x)

}2 −→ 0, (15)

(where the star ∗ stands for GEE or LL) as n → ∞ and n j/n → ρ j , with 0 < ρ j < 1 ( j = 1, 2, 3).

The MS consistency of the covariate-adjusted VUS estimator ̂AVUSMW−∗ or the truncated covariate-adjusted VUS estima-
tor ̂tAVUSMW−∗ can be proved by using the continuous-mapping theorem and the Slutsky theorem, together with the MS 
consistency of θ̂MW−∗(x) and of the histogram estimator f̂ X (·) (Freedman and Diaconis, 1981), and the uniform convergence 
of the empirical estimator F̂ X (·).
6
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Although simulation results in Section 4 (see Figs. 2–7 and Table 1) empirically support the conjecture of asymptotic 
normality of the covariate-specific estimators θ̂MW−∗(x) and of the covariate-adjusted VUS estimators ̂AVUSMW−∗ (also 
̂tAVUSMW−∗), a rigorous proof is not available to us. For this reason, we do not provide a closed-form for variance esti-
mation. We propose to use the bootstrap procedure (Efron and Tibshirani, 1993) in order to: (i) estimate the variance of the 
estimators θ̂MW−∗(x), ̂AVUSMW−∗ and ̂tAVUSMW−∗; (ii) obtain approximate pointwise confidence intervals for θ(x), AVUS or 
tAVUS through the percentile method.

4. Simulation study

In this section, we present the results of some simulation experiments carried out to evaluate the performance of the 
proposed MW-GEE and MW-LL methods for estimating the covariate-specific VUS, when the forms of the mean and variance 
functions are correctly specified or misspecified. In particular, we examine the Monte Carlo mean square errors (MSEs) of 
the estimators, and the empirical coverages of pointwise confidence intervals (and the behavior of variance estimators) 
obtained by the bootstrap procedure.

In the simulation study, we set the following sample sizes: n1 = n2 = n3 = 50, 100 and 200, and perform 1000 Monte 
Carlo replications for each experiment. As for the bootstrap procedure, we fix B = 500 bootstrap samples. We use the 
standard nonparametric bootstrap, and resample, at each Monte Carlo replication, B times from the generated data, in order 
to obtain samples of sizes n1, n2 and n3 for each class of disease, respectively.

We consider the following three different scenarios.

I. The covariate X is generated from a uniform distribution U(0, 1). The error terms ε1, ε2 and ε3 are generated from 
standard normal distributions. The test results Y1, Y2 and Y3 are simulated from the location-scale models (1), with the 
following mean and variance functions:

μ1(x) = 1 − 0.5x + x2,

μ2(x) = 1.5 + 0.5x + 2x3,

μ3(x) = 2 + 3x,

σ 2
j (x) = (1 − x + x2)2,

j = 1, 2, 3.
II. The covariate X and the test results Y1, Y2 and Y3 are simulated as in the scenario I. The error terms ε1, ε2 and ε3

are generated from t-distributions with degree of freedoms 5, 3 and 3, respectively, and then re-scaled to have unit 
variance.

III. The mean and variance functions are set as follows:

μ1(x) = −0.3 + sin(2πx),

μ2(x) = 1.5 + sin(2πx),

μ3(x) = 2 + sin(1.5x),

σ 2
j (x) = (0.5 + 1.2x)2,

j = 1, 2, 3. The covariate X is uniformly distributed on (0.5, 1.5), and the error terms ε1, ε2 and ε3 have standard 
normal distribution.

In the first two scenarios, we apply the MW-GEE approach with correctly specified mean and variance functions, whereas 
the linear form μ j(x) = β j0 + β j1x for the mean function and constant variances σ 2

j (x) = σ 2
j are implemented for the MW-

GEE estimator in the last scenario. As for the MW-LL approach, we resort to the Epanechnikov kernel K (u) = 0.75(1 −
u)2I(|u| < 1). The optimal bandwidths are obtained by using leave-one-out cross-validation method, given by R (R Core 
Team, 2018) package locpol (Ojeda Cabrera, 2018).

MSE of θ̂MW−GEE(x) and of θ̂MW−LL(x), at different values x for the covariate, are presented in Fig. 1. In the first sce-
nario, where we have correct model specifications and normal errors, the MW-GEE VUS estimator θ̂MW−GEE(x) appears to 
outperform the MW-LL estimator θ̂MW−LL(x). When the errors have heavy-tailed (re-scaled) t-distributions (Scenario II), 
θ̂MW−GEE(x) and θ̂MW−LL(x) yield comparable results. In the third scenario, where the (parametric) working models are mis-
specified, as expected, the non-parametric estimator θ̂MW−LL(x) is more effective than the semi-parametric one, namely 
θ̂MW−GEE(x). Finally, when sample sizes increase, the MSE of both covariate-specific VUS estimators tends to zero, except for 
θ̂MW−GEE(x) in the misspecification case.

The curves representing the averages of the Monte Carlo estimates (MCM) and of the Monte Carlo endpoints of the 95% 
pointwise bootstrap confidence intervals for θ(x) are showed in Figs. 2-4. For the sake of comparison, we also plot the true 
covariate-specific VUS, and the 95% pointwise normal-based confidence intervals for θ(x), i.e., the averages of the Monte 
7
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Fig. 1. Mean square error (MSE) of the MW-GEE (blue solid line) and MW-LL (red solid line) covariate-specific VUS estimators in scenario I, II and III. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Carlo endpoints of the intervals obtained assuming the asymptotic normality of the estimators and using the bootstrap 
variances.

From Figs. 2-4 we can see that the MCM curves for θ̂MW−LL(x) are close to the true ones in all scenarios, and the accuracy 
improves as the sample sizes increase. The MCM curves for θ̂MW−GEE(x) are close to the true ones in the two first scenarios, 
where mean and variance functions are correctly specified, and totally different to the true one under misspecification. We 
8



JID:COMSTA AID:107434 /FLA [m3G; v1.310] P.9 (1-15)

D.-K. To, G. Adimari and M. Chiogna Computational Statistics and Data Analysis ••• (••••) ••••••
Fig. 2. Monte Carlo mean (MCM) curves for the covariate-specific VUS estimators (blue solid line); average of the 95% pointwise bootstrap confidence 
intervals (blue dashed lines); average of the 95% pointwise normal-based confidence intervals (red dashed lines); true covariate-specific VUS (black solid 
line). Scenario I.

Fig. 3. Monte Carlo mean (MCM) curves for the covariate-specific VUS estimators (blue solid line); average of the 95% pointwise bootstrap confidence 
intervals (blue dashed lines); average of the 95% pointwise normal-based confidence intervals (red dashed lines); true covariate-specific VUS (black solid 
line). Scenario II.

can see that confidence intervals obtained by the percentile method are (averagely) close to the ones built by using normal 
approximation. The Monte Carlo coverage probabilities (CP) for such intervals are showed in Figs. 5-7. The good perfor-
mances of the bootstrap estimator for the variance of θ̂MW−∗(x), are documented in Figure S1, Section B of Supplementary 
9
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Fig. 4. Monte Carlo mean (MCM) curves for the covariate-specific VUS estimators (blue solid line); average of the 95% pointwise bootstrap confidence 
intervals (blue dashed lines); average of the 95% pointwise normal-based confidence intervals (red dashed lines); true covariate-specific VUS (black solid 
line). Scenario III.

Fig. 5. Empirical coverage of the pointwise bootstrap confidence intervals (black dashed lines) and of the pointwise normal-based confidence intervals (blue 
dashed lines), in scenario I. Nominal level 0.95.

Material, which shows the Monte Carlo standard deviations together with the averages of bootstrap standard deviations, in 
all scenarios with all considered sample sizes.

Finally, Table 1 presents the simulation results for the covariate-adjusted VUS estimators, for all scenarios I-III. Again, 
for each scenario and three different sample sizes, the table gives Monte Carlo mean (MCM), mean square error (MSE) 
multiplied by 100, Monte Carlo standard deviations (MCSD) and averages of estimated standard deviations (ASD) based 
10
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Fig. 6. Empirical coverage of the pointwise bootstrap confidence intervals (black dashed lines) and of the pointwise normal-based confidence intervals (blue 
dashed lines), in scenario II. Nominal level 0.95.

Fig. 7. Empirical coverage of the pointwise bootstrap confidence intervals (black dashed lines) and of the pointwise normal-based confidence intervals (blue 
dashed lines), in scenario III. Nominal level 0.95.

on bootstrap procedure, for the covariate-adjusted VUS estimators. The table also provides the empirical coverages (CP) of 
the 95% confidence intervals for the covariate-adjusted VUS, obtained both, by using the bootstrap percentile method and 
assuming the validity of the normal approximation. As showed in the table, the estimator ̂AVUSMW−LL performs well in 
terms of MSE and CP in all considered scenarios. The estimator ̂AVUSMW−GEE performs well only when the working models 
for mean and variance functions are properly specified. In general, the large sample sizes helps to improve the accuracy of 
11
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Table 1
Simulation results for the covariate-adjusted VUS estimators: Monte Carlo mean (MCM), 
mean square error (MSE) multiplied by 100, Monte Carlo standard deviations (MCSD), 
average of bootstrap standard deviations (ASD), and empirical coverages (CP) of the 95% 
confidence intervals obtained by using the percentile method (CP.Perc) and by using nor-
mal approximation (CP.Norm).

MCM MSE×100 MCSD ASD CP.Perc CP.Norm

Scenario I, True AVUS = 0.691
n = 50 MW-GEE 0.682 0.219 0.046 0.046 0.954 0.947

MW-LL 0.694 0.222 0.047 0.048 0.949 0.951

n = 100 MW-GEE 0.683 0.109 0.032 0.033 0.956 0.949
MW-LL 0.690 0.105 0.032 0.033 0.955 0.957

n = 200 MW-GEE 0.684 0.058 0.023 0.023 0.943 0.942
MW-LL 0.689 0.054 0.023 0.023 0.950 0.948

Scenario II, True AVUS = 0.765
n = 50 MW-GEE 0.742 0.338 0.053 0.051 0.919 0.928

MW-LL 0.760 0.269 0.052 0.050 0.944 0.936

n = 100 MW-GEE 0.751 0.137 0.034 0.035 0.935 0.950
MW-LL 0.762 0.115 0.034 0.034 0.956 0.949

n = 200 MW-GEE 0.755 0.074 0.025 0.025 0.930 0.939
MW-LL 0.761 0.063 0.025 0.024 0.948 0.946

Scenario III, True AVUS = 0.531
n = 50 MW-GEE 0.496 0.374 0.051 0.052 0.899 0.894

MW-LL 0.534 0.270 0.052 0.053 0.954 0.958

n = 100 MW-GEE 0.499 0.226 0.035 0.036 0.850 0.863
MW-LL 0.532 0.126 0.035 0.036 0.958 0.951

n = 200 MW-GEE 0.500 0.161 0.026 0.026 0.752 0.760
MW-LL 0.531 0.064 0.025 0.025 0.946 0.947

covariate-adjusted estimates, of course, for the ̂AVUSMW−GEE we need to specify the mean and variance functions. We can 
also see the good performance of the bootstrap variance estimation, in all scenarios.

5. Data application

In this section, we apply our proposed methods to the study of the effect of age on the ability of some cerebrospinal 
fluid (CSF) biomarkers to distinguish the stages of Alzheimer’s disease. The data were obtained from Alzheimer’s Disease 
Neuroimaging Initiative (ADNI, adni .loni .usc .edu). The ADNI was launched in 2003 as a public-private partnership, led by 
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 
For up-to-date information, see www.adni -info .org.

We consider 1215 subjects who registered in three ADNI projects: ADNI 1, ADNI 2 and ADNI GO. The true disease status 
of subjects were diagnosed by the means of neuropsychological tests, and consist of three categories: cognitively normal 
(CN), mild cognitive impairment (MCI), and Alzheimer’s disease (AD). Among 1215 subjects, we have 369 CN, 617 MCI and 
229 AD. We denote the first, the second and the third class as CN, MCI and AD, respectively. Among the CSF biomarkers 
measured in the three ADNI projects, we consider the three following biomarkers: Aβ1-42 (amyloid-β1-42), Tau (total tau) 
protein and pTau (phosphorylated tau) protein, as measured at baseline. For convenience, in our analysis we consider the 
log-transformation of biomarkers. Moreover, as the values of Aβ1-42 are negatively related to the disease status, we take 
the minus of log-values of Aβ1-42, so as to respect the ordering assumption.

In our analysis, we estimate Age-specific VUS as well as Age-adjusted VUS for the log-transformed Aβ1-42, Tau and pTau. 
For the GEE approach, we consider the following forms for the mean and variance functions:

μ j(Age) = β j0 + β j1 Age, σ 2
j (Age) = (γ j0 + γ j0 Age

)2
,

with j = 1, 2, 3. For the LL approach, the bandwidths used to estimate mean and variance functions are obtained by the 
leave-one-out cross validation method. In order to construct the 95% confidence intervals for the Age-specific VUS, as well 
as to estimate the standard errors and get the 95% confidence intervals for the Age-adjusted VUS, we apply the bootstrap 
procedure, with 1,000 bootstrap replications. The results for the Age-specific VUS estimates and corresponding the 95% 
confidence intervals for the log-transformed Aβ1-42, Tau and pTau are plotted in Fig. 8. In addition, we report the GEE esti-
mates of coefficients of the mean functions in Table S1 in Section C, Supplementary Material. The results show a significant 
12
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Fig. 8. Age-specific VUS estimates with 95% pointwise confidence intervals (percentile) for the CSF biomarkers, after log-transformation. Age from 55 to 85.

Table 2
Estimated Age-adjusted VUS for Aβ1-42, Tau and pTau, after log-transformation. 
The terms “Perc.CI” and “Normal.CI” stand for percentile confidence interval and 
Normal-approach confidence interval, respectively. Age from 55 to 85.

Estimate Standard error 95% Perc.CI 95% Normal.CI

Aβ1-42
MW-GEE 0.432 0.022 (0.377, 0.465) (0.388, 0.475)
MW-LL 0.443 0.023 (0.390, 0.481) (0.399, 0.488)

Tau-protein
MW-GEE 0.359 0.020 (0.311, 0.391) (0.319, 0.399)
MW-LL 0.360 0.020 (0.315, 0.395) (0.320, 0.400)

pTau-protein
MW-GEE 0.370 0.021 (0.326, 0.407) (0.329, 0.410)
MW-LL 0.373 0.020 (0.329, 0.409) (0.333, 0.413)

linear relationship between the transformed biomarkers and the Age. We also present the GEE and LL estimates of the mean 
functions, for each biomarker and each class of disease, in Figure S2 (Section C, Supplementary Material). The shapes of the 
LL estimated functions again point towards linearity of the relation between the log-transformed biomarker and the Age in 
the three classes.

As showed in Fig. 8, the estimated Age-specific VUS for all biomarkers appear to decrease with age, almost linearly. The 
results indicate a quite good diagnostic ability of the CSF biomarkers Aβ1-42, Tau and pTau when applied for patients from 
55 to 85 years old. For the older patients, the Age-specific VUS estimates are low, indicating that the biomarkers have not 
enough ability to distinguish between AD and the other two categories (CN and MCI). Overall, Aβ1-42 seems to show the 
best behavior.

Table 2 presents the estimated Age-adjusted VUS for the three CFS biomarkers. The results are quite different with 
respect to the unadjusted VUS estimates for Aβ1-42 (0.409, standard error 0.018, 95% confidence interval (0.374, 0.445)), 
for Tau (0.335, standard error 0.017, 95% confidence interval (0.302, 0.369)) and for pTau (0.343, standard error 0.017, 95% 
confidence interval (0.310, 0.377)). Overall, again, they indicate that the diagnostic accuracy of Aβ1-42 is the highest.
13
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6. Conclusions

We present a new method to adjust for covariate effects in the estimation of VUS. Our method is based on the induced-
regression methodology, which uses location-scale regression models to explain the relation between the test results and 
the covariate(s). For the estimation of the models, we propose to use a semiparametric GEE approach if the parametric 
forms of the mean and variance functions are specified. Alternatively, we propose a nonparametric method based on local 
linear regression. In order to estimate the covariate-specific VUS, we use a covariate-specific MW representation of VUS, and 
working samples constructed after fitting the location-scale models by the GEE or LL approach. This leads to new MW-GEE 
and MW-LL estimators. The asymptotic behavior of the new covariate-specific estimators has been investigated. As expected, 
our simulation study shows that MW-GEE estimator is generally more accurate (with respect the MW-LL one) when the 
parametric models for the mean and variance functions are correctly specified. However, the MW-LL estimator is robust 
with respect model misspecifications, while the MW-GEE estimator is even not consistent.

In the paper, we just consider the case of only one covariate. Nevertheless, the proposed method can be naturally 
extended to the case of multiple covariates. Such extension is simple for the semiparametric approach. In fact, for the MW-
GEE estimator, we have only to specify suitable parametric models for the mean and variance functions, which accomodate 
for multidimensional covariates. For the MW-LL estimator, the extension can be more challenging, as multivariate local 
linear regression estimators are influenced by the curse of dimensionality, and their statistical accuracy generally decreases 
when the dimension of X increases, and the estimation process requires extensive computation. It is also worth mentioning 
that in the multidimensional case, from a practical point of view, a standardization of covariates is often greatly beneficial. 
An alternative way to extend our proposed approach is to use (when possible) additive models (Fan and Gijbels, 1996; 
Härdle et al., 2012) for mean and variance functions. Clearly, this last topic deserves further investigation.

When approaching statistical evaluation of a diagnostic test or biomarker, one typically has an idea about the possible 
association between the test and the disease status, so that elicitation of a monotone ordering for the classes may not 
represent a major criticality. However, in our paper methods are designed under the assumption that the monotone ordering 
hypothesis holds for every value of the covariates. This assumption may not be satisfied in practice and its check might add, 
from a practical point of view, some complexity to the analysis. A rather pragmatic solution could be based on the selection 
of the values for the covariates that are considered most interesting in terms of the diagnostic task, and then resort to the 
use of some method of order identification (such as those discussed in Li et al., 2014) before applying our covariate-specific 
VUS estimators.

Our proposed methodology and theory can be straightforwardly extended to M-class problems where M > 3. Let 
Y1, Y2, . . . , Y M be the test results for subjects with respect to M ordered categories of disease status, say 1, 2, . . . , M , 
respectively. In such case, one can model the relationship between the covariate X and test results by the M location-
scale regression models as (1). Then the estimation procedure can be made consequently. In fact, one can apply the 
GEE or LL approaches to estimate the mean and variance functions, and then construct the working samples Ŷ ji,∗(x) =
μ̂ j,∗(x) + σ̂ j,∗(x)̂ε ji,∗ , at the value X = x, with j = 1, 2, . . . , M and i = 1, . . . , n j . An estimator of the covariate-specific hy-
pervolume under the ROC manifold (HUM) can be obtained by extending expression (10) as follows:

̂HU M∗(x) = 1

n1n2 . . .nM

n1∑
i=1

n2∑
r=1

. . .

nM∑
k=1

I
(
Ŷ1i,∗(x) < Ŷ2r,∗(x) < . . . < Ŷ Mk,∗(x)

)
.

The asymptotic properties of ̂HU M∗(x) can be proved by resorting to the classic limit theorem for M-sample U -statistics 
(Lehmann, 1998) and Lemma 2 and 3. Clearly, the GEE approach needs to specify the functional forms for the M mean and 
variance functions. Moreover, a potential challenging issue could be the requirement of the correct setting for the order of 
the M classes.

Beside VUS estimation, the search for an optimal pair of thresholds, based on some selection criteria, is a relevant issue 
in practice. Recently, several methods have been developed to this aim (we can cite the generalized Youden index method 
Nakas et al. (2010); the closest to perfection and the max volume approaches Attwood et al. (2014); and others Hua and 
Tian (2020)). Like the VUS, the optimal thresholds for a diagnostic test may be influenced by the covariates. Thus, the 
evaluation of the covariates effect on the optimal thresholds is of great interest, and, unfortunately, no results are available 
on this topic. As an optimal thresholds selection procedure requires the estimation of the three true class fractions, which 
actually can be estimated by using the working samples under the location-scale regression models, a possible solution to 
the problem could be based on the method proposed in this paper. Theoretical development for a new covariate-specific 
optimal thresholds selection method will be the focus of future research.

Finally, as suggested by a Reviewer, another interesting issue is the estimation of covariate-specific weighted VUS (see 
Huang and Li, 2019 when covariates are not present). We hope to deal with this topic in the near future.

Data availability

Data used in preparation of this article were obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) 
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